JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Deep sequencing analyses of pine wood nematode Bursaphelenchus xylophilus microRNAs reveal distinct miRNA expression patterns during the pathological process of pine wilt disease.

Gene 2015 January 26
Bursaphelenchus xylophilus is known as the causative agent of pine wilt disease with complex life cycles. In this research, four small RNA libraries derived from different infection stages of pine wilt disease were constructed and sequenced. Consequently, we obtained hundreds of evolutionarily conserved miRNAs and novel miRNA candidates. The analysis of miRNA expression patterns showed that most miRNAs were expressed at extraordinarily high levels during the middle stage of pine wilt disease. Functional analysis revealed that expression levels of miR-73 and miR-239 were mutually exclusive with their target GH45 cellulase genes. In addition, another set of atypical miRNAs, termed mirtrons, was also identified in this study. Thus, our research has provided detailed characterization of B. xylophilus miRNA expression patterns during the pathological process of pine wilt disease. These findings would contribute to more in-depth understanding of this devastating plant disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app