JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibiting epigenetic enzymes to improve atherogenic macrophage functions.

Macrophages determine the outcome of atherosclerosis by propagating inflammatory responses, foam cell formation and eventually necrotic core development. Yet, the pathways that regulate their atherogenic functions remain ill-defined. It is now apparent that chromatin remodeling chromatin modifying enzymes (CME) governs immune responses but it remains unclear to what extent they control atherogenic macrophage functions. We hypothesized that epigenetic mechanisms regulate atherogenic macrophage functions, thereby determining the outcome of atherosclerosis. Therefore, we designed a quantitative semi-high-throughput screening platform and studied whether the inhibition of CME can be applied to improve atherogenic macrophage activities. We found that broad spectrum inhibition of histone deacetylases (HDACs) and histone methyltransferases (HMT) has both pro- and anti-inflammatory effects. The inhibition of HDACs increased histone acetylation and gene expression of the cholesterol efflux regulators ATP-binding cassette transporters ABCA1 and ABCG1, but left foam cell formation unaffected. HDAC inhibition altered macrophage metabolism towards enhanced glycolysis and oxidative phosphorylation and resulted in protection against apoptosis. Finally, we applied inhibitors against specific HDACs and found that HDAC3 inhibition phenocopies the atheroprotective effects of pan-HDAC inhibitors. Based on our data, we propose the inhibition of HDACs, and in particular HDAC3, in macrophages as a novel potential target to treat atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app