JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genetic characterisation of influenza B viruses detected in Singapore, 2004 to 2009.

BACKGROUND: Influenza B viruses are classified into two main lineages: Yamagata-like and Victoria-like, which differ antigenically and phylogenetically. To understand the evolution of influenza B viruses in South East Asia as well as to determine the vaccine efficacy, we genetically characterised gene segments 4, 6 and 8 from non-tissue culture adapted influenza B viruses detected in Singapore from 2004 to 2009.

METHODS: vRNA were extracted from the nasopharyngeal swabs or nasal washes of SAF servicemen displaying febrile and respiratory symptoms, and subjected to PCR assay to test for the presence of influenza B virus. The PCR-positive specimens were next subjected to sequencing of the full gene segments 4 (HA), 6 (NA/NB) and 8 (NS1/NEP). The nucleotide sequences were aligned together with that of other specimens isolated from South East Asia as well as the vaccine strains. Phylogenetic trees of each gene segment were constructed and the amino acid alignments were analysed.

RESULTS: A majority of the Singaporean specimens analysed in this study, from 2004-2009, had gene segment 4 from the Victoria-like lineage and gene segment 6 from Yamagata-like lineage. Some of these specimens had both gene segments from the Yamagata lineage and this resulted in several vaccine mismatches. Gene segment 8 from majority of these specimens clustered separately from both the Yamagata and Victoria strains. The HA protein of most of the Singaporean specimens isolated post 2000 contained a glycosylation site at position 211, which was not dominant prior to 2000. No amino acid substitution conferring drug-resistance was found in either the HA or NA proteins.

CONCLUSIONS: The presence of both lineages co-circulating post 2000, suggests that a trivalent vaccine is not enough to confer immunity to the general public, strongly endorsing the inclusion of both lineages in the vaccine. Several amino acid substitutions were observed, prompting in depth functional analyses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app