Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

How to mechanistically explain the CONDOR study data.

Medical Hypotheses 2015 January
Results of the CONDOR study suggest that in osteoarthritis and rheumatoid arthritis patients at elevated risk of gastrointestinal (GI) events, treatment with celecoxib, a cyclooxygenase (COX)-2 selective non-steroidal anti-inflammatory drug (NSAID), demonstrated significantly lower toxicity in the upper and lower (GI) tract when compared to the non-selective NSAID diclofenac plus a proton-pump-inhibitor (PPI), omeprazole. According to current knowledge, traditional NSAIDs (tNSAIDs) as non-selective COX-inhibitors exert their damaging effects on the upper GI tract, largely by reduction of the COX-1 related synthesis of gastro-protective prostaglandins. Thus, the question arises, how NSAIDs do exert their damaging effects especially in the lower GI tract and how to explain the reduced risk of a COX-2 selective inhibitor, celecoxib. Here we hypothesize, that the toxicity of celecoxib on enteral mucosa cells is lower than observed with other NSAIDs, and can be explained COX-independently by typical physicochemical properties of the NSAID substances (e.g., acidic, lipophilic, amphiphilic, surfactant properties). As a consequence these features account for differences in (1) uncoupling effects on mitochondria, (2) effects on cell membrane integrity, and/or (3) formation of "toxic micelles" with bile salts. The evidence for these differences is mainly based on experimental findings. However, several phenomena show differences in extent (e.g., uncoupling effects). The reduced toxicity appears to be rather a substance-specific characteristic. This is an unconditional reason to carry on investigating these phenomena in experimental and large-scale clinical trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app