Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Activation of endogenously expressed ion channels by active complement in the retinal pigment epithelium.

Defective regulation of the alternative pathway of the complement system is believed to contribute to damage of retinal pigment epithelial (RPE) cells in age-related macular degeneration. Thus we investigated the effect of complement activation on the RPE cell membrane by analyzing changes in membrane conductance via patch-clamp techniques and Ca(2+) imaging. Exposure of human ARPE-19 cells to complement-sufficient normal human serum (NHS) (25 %) resulted in a biphasic increase in intracellular free Ca(2+) ([Ca(2+)]i); an initial peak followed by sustained Ca(2+) increase. C5- or C7-depleted sera did not fully reproduce the signal generated by NHS. The initial peak of the Ca(2+) response was reduced by sarcoplasmic Ca(2+)-ATPase inhibitor thapsigargin, L-type channel blockers (R)-(+)-BayK8644 and isradipine, transient-receptor-potential (TRP) channel blocker ruthenium-red and ryanodine receptor blocker dantrolene. The sustained phase was carried by CaV1.3 L-type channels via tyrosine-phosphorylation. Changes in [Ca(2+)]I were accompanied by an abrupt hyperpolarization, resulting from a transient increase in membrane conductance, which was absent under extracellular Ca(2+)- or K(+)-free conditions and blocked by (R)-(+)-BayK8644 or paxilline, a maxiK channel inhibitor. Single-channel recordings confirmed the contribution of maxiK channels. Primary porcine RPE cells responded to NHS in a comparable manner. Pre-incubation with NHS reduced H2O2-induced cell death. In summary, in a concerted manner, C3a, C5a and sC5b-9 increased [Ca(2+)]i by ryanodine-receptor-dependent activation of L-type channels in addition to maxi-K channels and TRP channels absent from any insertion of a lytic pore.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app