Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Intrinsic disorder mediates hepatitis C virus core-host cell protein interactions.

Protein Science 2015 Februrary
Viral proteins bind to numerous cellular and viral proteins throughout the infection cycle. However, the mechanisms by which viral proteins interact with such large numbers of factors remain unknown. Cellular proteins that interact with multiple, distinct partners often do so through short sequences known as molecular recognition features (MoRFs) embedded within intrinsically disordered regions (IDRs). In this study, we report the first evidence that MoRFs in viral proteins play a similar role in targeting the host cell. Using a combination of evolutionary modeling, protein-protein interaction analyses and forward genetic screening, we systematically investigated two computationally predicted MoRFs within the N-terminal IDR of the hepatitis C virus (HCV) Core protein. Sequence analysis of the MoRFs showed their conservation across all HCV genotypes and the canine and equine Hepaciviruses. Phylogenetic modeling indicated that the Core MoRFs are under stronger purifying selection than the surrounding sequence, suggesting that these modules have a biological function. Using the yeast two-hybrid assay, we identified three cellular binding partners for each HCV Core MoRF, including two previously characterized cellular targets of HCV Core (DDX3X and NPM1). Random and site-directed mutagenesis demonstrated that the predicted MoRF regions were required for binding to the cellular proteins, but that different residues within each MoRF were critical for binding to different partners. This study demonstrated that viruses may use intrinsic disorder to target multiple cellular proteins with the same amino acid sequence and provides a framework for characterizing the binding partners of other disordered regions in viral and cellular proteomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app