JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

mTOR kinase inhibitors promote antibody class switching via mTORC2 inhibition.

The mammalian target of rapamycin (mTOR) is a kinase that functions in two distinct complexes, mTORC1 and mTORC2. In peripheral B cells, complete deletion of mTOR suppresses germinal center B-cell responses, including class switching and somatic hypermutation. The allosteric mTORC1 inhibitor rapamycin blocks proliferation and differentiation, but lower doses can promote protective IgM responses. To elucidate the complexity of mTOR signaling in B cells further, we used ATP-competitive mTOR kinase inhibitors (TOR-KIs), which inhibit both mTORC1 and mTORC2. Although TOR-KIs are in clinical development for cancer, their effects on mature lymphocytes are largely unknown. We show that high concentrations of TOR-KIs suppress B-cell proliferation and differentiation, yet lower concentrations that preserve proliferation increase the fraction of B cells undergoing class switching in vitro. Transient treatment of mice with the TOR-KI compound AZD8055 increased titers of class-switched high-affinity antibodies to a hapten-protein conjugate. Mechanistic investigation identified opposing roles for mTORC1 and mTORC2 in B-cell differentiation and showed that TOR-KIs enhance class switching in a manner dependent on forkhead box, subgroup O (FoxO) transcription factors. These observations emphasize the distinct actions of TOR-KIs compared with rapamycin and suggest that TOR-KIs might be useful to enhance production of class-switched antibodies following vaccination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app