Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Antiplatelet effects of Rhus verniciflua stokes heartwood and its active constituents--fisetin, butein, and sulfuretin--in rats.

Rhus verniciflua stokes (RVS) is known to promote blood circulation by preventing blood stasis, although the active ingredients and the underlying mechanism are unclear. Platelets are the primary cells that regulate circulation and contribute to the development of diverse cardiovascular diseases by aggregation and thrombosis. The study assessed the antiplatelet activity of RVS and sought to identify the active constituents. Pretreatment of washed platelets with RVS heartwood extract blunted the aggregatory response of platelets to collagen. In the subfractions, fisetin, butein, and sulfuretin were identified as effective inhibitors of platelet aggregation by collagen, thrombin, and adenosine-5'-diphosphate. Antiplatelet activities of all three compounds were concentration dependent, and fisetin had longer in vitro duration of action compared with butein or sulfuretin. Extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase activation by collagen was prevented by fisetin, whereas butein and sulfuretin failed to inhibit ERK and p38 activation was not affected by any of the compounds. Rats orally administered 100 mg/(kg·day(-1)) fisetin for 7 days were resistant to arterial thrombosis, although total extract of RVS heartwood exhibited little effect at a dose of 1000 mg/(kg·day(-1)). RVS heartwood may have cardiovascular protective activity by inhibiting platelet aggregation. The active constituents are fisetin, butein, and sulfuretin, and fisetin is orally effective against thrombosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app