Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Hydrogen-bonded water molecules in the M2 channel of the influenza A virus guide the binding preferences of ammonium-based inhibitors.

The tetrameric M2 proton channel of influenza A virus is an integral membrane protein responsible for the acidification of the viral interior. Drugs such as amantadine target the transmembrane region of wild type M2 by acting as pore blockers. However, a number of mutations affecting this domain confer drug resistance, prompting the need for alternative inhibitors. The availability of high-resolution structures of drug-bound M2, paired with computational investigations, revealed that inhibitors can bind at different sites, and provided useful insights in understanding the principles governing proton conduction. Here, we investigated by computation the energetic and geometric factors determining the relative stability of pore blockers at individual sites of different M2 strains. We found that local free energy minima along the translocation pathway of positively charged chemical species correspond to experimentally determined binding sites of inhibitors. Then, by examining the structure of water clusters hydrating each site, as well as of those displaced by binding of hydrophobic scaffolds, we predicted the binding preferences of M2 ligands. This information can be used to guide the identification of novel classes of inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app