Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of a dexmedetomidine constant rate infusion and atropine on changes in global perfusion variables induced by hemorrhage followed by volume replacement in isoflurane-anesthetized dogs.

OBJECTIVE: To evaluate the effects of a dexmedetomidine constant rate infusion (CRI) and atropine on changes in global perfusion variables induced by hemorrhage and volume replacement (VR) in isoflurane-anesthetized dogs.

ANIMALS: 8 adult dogs.

PROCEDURES: Each dog was anesthetized twice, with a 2-week interval between anesthetic sessions. Anesthesia was maintained with 1.3 times the minimum alveolar concentration of isoflurane with and without dexmedetomidine (1.6 μg/kg, IV bolus, followed by 2 μg/kg/h, CRI). Dogs were mechanically ventilated and received an atracurium neuromuscular blockade during both sessions. During anesthesia with isoflurane and dexmedetomidine, atropine was administered 30 minutes before baseline measurements were obtained. After baseline data were recorded, 30% of the total blood volume was progressively withdrawn and VR was achieved with an equal proportion of autologous blood.

RESULTS: Following hemorrhage, cardiac index, oxygen delivery index, and mixed-venous oxygen saturation were significantly decreased and the oxygen extraction ratio was significantly increased from baseline. The anaerobic threshold was not achieved during either anesthetic session. When dogs were anesthetized with isoflurane and dexmedetomidine, they had a significantly lower heart rate, cardiac index, and mixed-venous oxygen saturation during VR than they did when anesthetized with isoflurane alone. Plasma lactate concentration, mixed venous-to-arterial carbon dioxide difference, base excess, and anion gap were unaltered by hemorrhage and VR and did not differ between anesthetic sessions.

CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the use of a dexmedetomidine CRI combined with atropine in isoflurane-anesthetized dogs that underwent volume-controlled hemorrhage followed by VR did not compromise global perfusion sufficiently to result in anaerobic metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app