Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The photoprotective role of spermidine in tomato seedlings under salinity-alkalinity stress.

Polyamines are small, ubiquitous, nitrogenous compounds that scavenge reactive oxygen species and stabilize the structure and function of the photosynthetic apparatus in response to abiotic stresses. Molecular details underlying polyamine-mediated photoprotective mechanisms are not completely resolved. This study investigated the role of spermidine (Spd) in the structure and function of the photosynthetic apparatus. Tomato seedlings were subjected to salinity-alkalinity stress with and without foliar application of Spd, and photosynthetic and morphological parameters were analyzed. Leaf dry weight and net photosynthetic rate were reduced by salinity-alkalinity stress. Salinity-alkalinity stress reduced photochemical quenching parameters, including maximum photochemistry efficiency of photosystem II, quantum yield of linear electron flux, and coefficient of photochemical quenching (qP). Salinity-alkalinity stress elevated nonphotochemical quenching parameters, including the de-epoxidation state of the xanthophyll cycle and nonphotochemical quenching (NPQ). Microscopic analysis revealed that salinity-alkalinity stress disrupted the internal lamellar system of granal and stromal thylakoids. Exogenous Spd alleviated the stress-induced reduction of leaf dry weight, net photosynthetic rate, and qP parameters. The NPQ parameters increased by salinity-alkalinity stress were also alleviated by Spd. Seedlings treated with exogenous Spd had higher zeaxanthin (Z) contents than those without Spd under salinity-alkalinity stress. The chloroplast ultrastructure had a more ordered arrangement in seedlings treated with exogenous Spd than in those without Spd under salinity-alkalinity stress. These results indicate that exogenous Spd can alleviate the growth inhibition and thylakoid membrane photodamage caused by salinity-alkalinity stress. The Spd-induced accumulation of Z also may have an important role in stabilizing the photosynthetic apparatus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app