Journal Article
Review
Add like
Add dislike
Add to saved papers

RNA interference therapy: a new solution for intracranial atherosclerosis?

Intracranial atherosclerotic stenosis (ICAS) of a major intracranial artery, especially middle cerebral artery (MCA), is reported to be one leading cause of ischemic stroke throughout the world. Compared with other stroke subtypes, ICAS is associated with a higher risk of recurrent stroke despite aggressive medical therapy. Increased understanding of the pathophysiology of ICAS has highlighted several possible targets for therapeutic interventions. Both luminal stenosis and plaque components of ICAS have been found to be associated with ischemic stroke based a post-mortem study. Recent application of high-resolution magnetic resonance imaging (HRMRI) in evaluating ICAS provides new insight into the vascular biology of plaque morphology and component. High signal on T1-weighted fat-suppressed images (HST1) within MCA plaque of HRMRI, highly suggested of fresh or recent intraplaque hemorrhage, has been found to be associated with ipsilateral brain infarction. Thus, the higher prevalence of intraplaque hemorrhage and neovasculature in symptomatic patients with MCA stenosis may provide a potential target for plaque stabilization. We hypothesize that RNA interference (RNAi) therapy delivered by modified nanoparticles may achieve in vivo biomedical imaging and targeted therapy. With the rapid developments in studies about therapeutic and diagnostic nanomaterials, future studies further exploring the molecular biology of atherosclerosis may provide more drug targets for plaque stabilization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app