COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Efficiency of gas transfer in venovenous extracorporeal membrane oxygenation: analysis of 317 cases with four different ECMO systems.

PURPOSE: Polymethylpentene membrane oxygenators used in venovenous extracorporeal membrane oxygenation (vvECMO) differ in their physical characteristics. The aim of the study was to analyze the gas transfer capability of different ECMO systems in clinical practice, as the choice of the appropriate system may be influenced by the needs of the patient.

METHODS: Retrospective study on prospectively collected data of adults with severe respiratory failure requiring vvECMO support (Regensburg ECMO Registry, 2009-2013). Oxygen (O2) transfer and carbon dioxide (CO2) elimination of four different ECMO systems (PLS system, n = 163; Cardiohelp system (CH), n = 59, Maquet Cardiopulmonary, Rastatt, Germany; Hilite 7000 LT system, n = 56, Medos Medizintechnik, Stolberg, Germany; ECC.05 system, n = 39, Sorin Group, Mirandola (MO), Italy) were analyzed.

RESULTS: Gas transfer depended on type of ECMO system, blood flow, and gas flow (p ≤ 0.05, each). CO2 removal is dependent on sweep gas flow and blood flow, with higher blood flow and/or gas flow eliminating more CO2 (p ≤ 0.001). CO2 elimination capacity was highest with the PLS system (p ≤ 0.001). O2 transfer at blood flow rates below 3 l/min depended on blood flow, at higher blood flow rates on blood flow and gas flow. The system with the smallest gas exchange surface (ECC.05 system) was least effective in O2 transfer, but in terms of the gas exchange surface was the most effective.

CONCLUSION: Our analysis suggests that patients with severe hypoxemia and need for high flow ECMO benefit more from the PLS/CH or Hilite 7000 LT system. The ECC.05 system is advisable for patients with moderate hypoxemia and/or hypercapnia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app