JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel method to detect pressure-induced sensor attenuations (PISA) in an artificial pancreas.

Continuous glucose monitors (CGMs) provide real-time interstitial glucose concentrations that are essential for automated treatment of individuals with type 1 diabetes. Miscalibration, noise spikes, dropouts, or pressure applied to the site (e.g., lying on the site while sleeping) can cause inaccurate glucose signals, which could lead to inappropriate insulin dosing decisions. These studies focus on the problem of pressure-induced sensor attenuations (PISAs) that occur overnight and can cause undesirable pump shut-offs in a predictive low glucose suspend system. The algorithm presented here uses real-time CGM readings without knowledge of meals, insulin doses, activity, sensor recalibrations, or fingerstick measurements. The real-time PISA detection technique was tested on outpatient "in-home" data from a predictive low-glucose suspend trial with over 1125 nights of data. A total of 178 sets were created by using different parameters for the PISA detection algorithm to illustrate its range of available performance. The tracings were reviewed via a web-based analysis tool by an engineer with an extensive expertise on analyzing clinical datasets and ~3% of the CGM readings were marked as PISA events which were used as the gold standard. It is shown that 88.34% of the PISAs were successfully detected by the algorithm, and the percentage of false detections could be reduced to 1.70% by altering the algorithm parameters. Use of the proposed PISA detection method can result in a significant decrease in undesirable pump suspensions overnight, and may lead to lower overnight mean glucose levels while still achieving a low risk of hypoglycemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app