Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Preparation and preclinical evaluation of (66)Ga-DOTA-E(c(RGDfK))2 as a potential theranostic radiopharmaceutical.

INTRODUCTION: Integrin αvβ3 plays an important role in angiogenesis and is over-expressed in tumoral endothelial cells and some other tumor cells. RGD (Arg-Gly-Asn) peptides labeled with (68)Ga (t1/2=68min) have showed good characteristics for imaging of αvβ3 expression using positron emission tomography (PET). Gallium-66 has been proposed as a PET imaging alternative to (68)Ga and given the unique high energy of its emitted positrons (Emax 4.15MeV) it may also be useful for therapy. The aim of this research is to prepare [(66)Ga]DOTA-E-[c(RGDfK)]2 and evaluate in mice its potential as a new theranostic radiopharmaceutical.

METHODS: High specific activity (66)Ga was produced via the (66)Zn(p,n) reaction, and the labelling method of DOTA-E-[c(RGDfK)]2 with (66)Ga was optimized. Radiochemical purity was determined by TLC, and in vitro stability and protein binding were determined. Serial microPET imaging and biodistribution studies were carried out in nude mice bearing C6 xenografts. Radiation absorbed dose estimates were based on the biodistribution studies, where tumor and organs of interest were collected at 0.5, 1, 3, 5 and 24h post-injection of [(66)Ga]DOTA-E-[c(RGDfK)]2.

RESULTS: Our results have shown that [(66)Ga]DOTA-E-[c(RGDfK)]2 can be prepared with high radiochemical purity (>97%), specific activity (36-67GBq/μmol), in vitro stability, and moderate protein binding. MicroPET imaging up to 24 post-injection showed contrasting tumors reflecting αvβ3-targeted tracer accumulation. Biodistribution studies and dosimetry estimations showed a stable tumor uptake, rapid blood clearance, and favorable tumor-to-tissue ratios.

CONCLUSIONS: The peptide conjugated DOTA-E-[c(RGDfK)]2 labeled with (66)Ga may be attractive as a theranostic agent for tumors over-expressing αvβ3 integrins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app