Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Both hydrogen peroxide and transforming growth factor beta 1 contribute to endothelial Nox4 mediated angiogenesis in endothelial Nox4 transgenic mouse lines.

Vascular endothelial cells (ECs) are responsible for post-ischemic angiogenesis, a process that is regulated by reactive oxygen species. Recent studies indicate that endothelial Nox4 based NADPH oxidase may have a key role. This study examines the role of endothelial Nox4 in ischemia-induced angiogenesis and explores the potential mechanisms involved. Mouse lines overexpressing human Nox4 wild type (EWT) or its dominant negative form P437H (EDN) specifically in the endothelium were used. Non-transgenic littermate mice (NTg) were used as controls. Following hind limb ischemia, blood flow recovery was enhanced in EWT and was impaired in EDN compared with NTg. The critical angiogenesis regulating genes vascular endothelial growth factor receptor2 (VEGFR2), endothelial nitric oxide synthase (eNOS) and transforming growth factor beta1 (TGFbeta1) were upregulated in EWT both in the ischemic muscle and in heart ECs, while TGFbeta1 was downregulated in EDNECs. In EC, both VEGFA and TGFbeta1 stimulated EC proliferation, migration, and capillary-like network formation in EWT but failed to do so in EDN. Application of TGFbeta1 increased both VEGFR2 and eNOS expression levels,whereas blocking TGFbeta1 or addition of catalase inhibited the phosphorylation of VEGFR2 and eNOS, indicating H2O2 and TGFbeta1 signaling downstream of Nox4 is critical to maintain EC angiogenic functions. Use of cell specific transgenic mice with both upregulation and downregulation of endothelial Nox4 indicate several mechanisms linked to Nox4 play a role in angiogenesis. Endothelial Nox4 regulates ischemia-induced angiogenesis, likely through H2O2- and TGFbeta1-mediated activation of cell signaling pathways essential for endothelial function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app