JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Contrasting carbon allocation responses of juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies) to competition and ozone.

Allocation of recent photoassimilates of juvenile beech and spruce in response to twice-ambient ozone (2 × O(3)) and plant competition (i.e. intra vs. inter-specific) was examined in a phytotron study. To this end, we employed continuous (13)CO(2)/(12)CO(2) labeling during late summer and pursued tracer kinetics in CO(2) released from stems. In beech, allocation of recent photoassimilates to stems was significantly lowered under 2 × O(3) and increased in spruce when grown in mixed culture. As total tree biomass was not yet affected by the treatments, C allocation reflected incipient tree responses providing the mechanistic basis for biomass partitioning as observed in longer experiments. Compartmental modeling characterized functional properties of substrate pools supplying respiratory C demand. Respiration of spruce appeared to be exclusively supplied by recent photoassimilates. In beech, older C, putatively located in stem parenchyma cells, was a major source of respiratory substrate, reflecting the fundamental anatomical disparity between angiosperm beech and gymnosperm spruce.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app