Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chronic spinal cord stimulation modifies intrinsic cardiac synaptic efficacy in the suppression of atrial fibrillation.

We sought to determine whether spinal cord stimulation (SCS) therapy, when applied chronically to canines, imparts long-lasting cardio-protective effects on neurogenic atrial tachyarrhythmia induction and, if so, whether its effects can be attributable to i) changes in intrinsic cardiac (IC) neuronal transmembrane properties vs ii) modification of their interneuronal stochastic interactivity that initiates such pathology. Data derived from canines subjected to long-term SCS [(group 1: studied after 3-4 weeks SCS; n = 5) (group 2: studied after 5 weeks SCS; n = 11)] were compared to data derived from 10 control animals (including 4 sham SCS electrode implantations). During terminal studies conducted under anesthesia, chronotropic and inotropic responses to vagal nerve or stellate ganglion stimulation were similar in all 3 groups. Chronic SCS suppressed atrial tachyarrhythmia induction evoked by mediastinal nerve stimulation. When induced, arrhythmia durations were shortened (controls: median of 27 s; SCS 3-4 weeks: median of 16s; SCS 5 weeks: median of 7s). Phasic and accommodating right atrial neuronal somata displayed similar passive and active membrane properties in vitro, whether derived from sham or either chronic SCS group. Synaptic efficacy was differentially enhanced in accommodating (not phasic) IC neurons by chronic SCS. Taken together these data indicate that chronic SCS therapy modifies IC neuronal stochastic inter-connectivity in atrial fibrillation suppression by altering synaptic function without directly targeting the transmembrane properties of individual IC neuronal somata.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app