Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Haemorrhagic and thrombotic diatheses in mouse models with thrombocytosis.

We studied haemostasis in two mouse models with thrombocytosis caused by different pathogenic mechanisms. In one strain (Yall;Mpl-/-) thrombocytosis is driven by a misbalance between thrombopoietin and its receptor, whereas in the other strain, thrombocytosis is caused by expressing a human JAK2-V617F transgene (FF1) that depends on activation by Cre-recombinase (VavCre;FF1, MxCre;FF1). Thrombotic responses were increased following some, but not all types of challenges. In a vaso-occlusive thrombotic model following collagen-adrenaline injection we found increased mortality in both strains. Arterial thrombosis, examined after ferric chloride-induced carotid injury, was accelerated but with little impact on maximal thrombus size. In a vena cava stasis model, clots were of similar size as in wild-type controls, but exhibited a different composition with a higher platelet to fibrin ratio. Both thrombocytosis strains displayed increased haemorrhagic tendency in a tail bleeding assay. Yall;Mpl and VavCre;FF1 displayed a lower proportion of the more reactive high-molecular-weight forms of von Willebrand factor in their plasma, mimicking essential thrombocythaemia with very high platelet counts. Bleeding could not be explained by clear defects in platelet activation, which were normal or only weakly decreased. In conclusion, these models of thrombocytosis recapitulate several features of the haemorrhagic and thrombotic diatheses in ET and PV demonstrating potentials but also some limitations to study these major complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app