JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural basis of the activation and degradation mechanisms of the E3 ubiquitin ligase Nedd4L.

Structure 2014 October 8
We investigated the mechanisms of activation and degradation of the E3 ubiquitin ligase Nedd4L combining the available biochemical information with complementary biophysical techniques. Using nuclear magnetic resonance spectroscopy, we identified that the C2 domain binds Ca(2+) and inositol 1,4,5-trisphosphate (IP3) using the same interface that is used to interact with the HECT domain. Thus, we propose that the transition from the closed to the active form is regulated by a competition of IP3 and Ca(2+) with the HECT domain for binding to the C2 domain. We performed relaxation experiments and molecular dynamic simulations to determine the flexibility of the HECT structure and observed that its conserved PY motif can become solvent-exposed when the unfolding process is initiated. The structure of the WW3 domain bound to the HECT-PY site reveals the details of this interaction, suggesting a possible auto-ubquitination mechanism using two molecules, a partially unfolded one and a fully functional Nedd4L counterpart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app