Add like
Add dislike
Add to saved papers

Alleviation of glutamate mediated neuronal insult by piroxicam in rodent model of focal cerebral ischemia: a possible mechanism of GABA agonism.

Neurotransmitter imbalance is an inevitable outcome in cerebral ischemia that leads to neuronal death. In the present study, we evaluated the effects of piroxicam, a nonsteroidal anti-inflammatory drug (NSAID), on extracellular brain glutamate and γ-aminobutyric acid (GABA) release, survival time, and neuronal cell death. Transient focal cerebral ischemia in male Charles Foster rat led to neuronal infarction and compromised intrinsic antioxidant status. Thirty-minute preadministration of piroxicam (10 mg/kg b.w.) showed a significant (P < 0.01) reduction in cerebral infarct volume and potentiation of the intrinsic antioxidant status. High-performance liquid chromatography of brain cortex and striatum revealed changes in extracellular concentrations of neurotransmitters which were found to be 0.519 ± 0.44 pmole/mg (GABA); 1.18 ± 0.28 pmole/mg (glutamate), and 0.63 ± 0.21 pmole/mg (serotonin), respectively. Hydroxyl radical (·OH) adduct of salicylate in the frontal cortex and striatum in control, untreated, and treated groups was found to be 0.261 ± 0.06, 0.68 ± 0.52, and 0.401 ± 0.68 pmole/mg, respectively. After stroke, the extracellular level of glutamate in rat brain increases continuously as compared to that of control group. However, piroxicam administration in stroke rat significantly reduced (P < 0.05) elevated extracellular cerebral glutamate. This indicates that piroxicam attenuates extracellular glutamate release and also reduces neuronal cell death due to reduction in oxidative stress in cerebral ischemia. Our results also indicate a consequent increase of extracellular GABA in brain regions administered with piroxicam, which hints that piroxicam alleviates glutamate excitotoxicity possibly by GABA agonism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app