CLINICAL TRIAL
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cognitive workload assessment based on the tensorial treatment of EEG estimates of cross-frequency phase interactions.

The decoding of conscious experience, based on non-invasive measurements, has become feasible by tailoring machine learning techniques to analyse neuroimaging data. Recently, functional connectivity graphs (FCGs) have entered into the picture. In the related decoding scheme, FCGs are treated as unstructured data and, hence, their inherent format is overlooked. To alleviate this, tensor subspace analysis (TSA) is incorporated for the parsimonious representation of connectivity data. In addition to the particular methodological innovation, this work also makes a contribution at a conceptual level by encoding in FCGs cross-frequency coupling apart from the conventional frequency-specific interactions. Working memory related tasks, supported by networks oscillating at different frequencies, are good candidates for assessing the novel approach. We employed surface EEG recordings when the subjects were repeatedly performing a mental arithmetic task of five cognitive workload levels. For each trial, an FCG was constructed based on phase interactions within and between Frontal (θ) and Parieto-Occipital (α2) neural activities, which are considered to reflect the function of two distinct working memory subsystems. Based on the TSA representation, a remarkably high correct-recognition-rate (96%) of the task difficulties was achieved using a standard classifier. The overall scheme is computational efficient and therefore potentially useful for real-time and personalized applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app