Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways.

Cell Death & Disease 2014 October 3
The PI3K/Akt/mTOR pathway has a central role in cancer metastasis and radiotherapy. To develop effective therapeutics to improve radiosensitivity, understanding the possible pathways of radioresistance involved and the effects of a combination of the PI3K/Akt/mTOR inhibitors with radiotherapy on prostate cancer (CaP) radioresistant cells is needed. We found that compared with parent CaP cells, CaP-radioresistant cells demonstrated G0/G1 and S phase arrest, activation of cell cycle check point, autophagy and DNA repair pathway proteins, and inactivation of apoptotic proteins. We also demonstrated that compared with combination of single PI3K or mTOR inhibitors (BKM120 or Rapamycin) and radiation, low-dose of dual PI3K/mTOR inhibitors (BEZ235 or PI103) combined with radiation greatly improved treatment efficacy by repressing colony formation, inducing more apoptosis, leading to the arrest of the G2/M phase, increased double-strand break levels and less inactivation of cell cycle check point, autophagy and non-homologous end joining (NHEJ)/homologous recombination (HR) repair pathway proteins in CaP-radioresistant cells. This study describes the possible pathways associated with CaP radioresistance and demonstrates the putative mechanisms of the radiosensitization effect in CaP-resistant cells in the combination treatment. The findings from this study suggest that the combination of dual PI3K/Akt/mTOR inhibitors (BEZ235 or PI103) with radiotherapy is a promising modality for the treatment of CaP to overcome radioresistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app