ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[The mechanism of change in speed of agglutination of human erythrocytes under the influence of adrenaline].

In the study of red blood cells of 80 men found that adrenaline (10(-10) - 10(-6) g/mL) and phenylephrine (10-(10) - 10(-6) g/mL) dose-dependently increase the speed of agglutination of red blood cells, according to the decrease in agglutination of the start time and ginipral (10(-10) - 10(-7) g/mL), on the contrary, decreases it. The effect of adrenaline and phenylephrine is blocked by nicergoline (10(-6) g/mL), increased obzidan (10(-6) g/mL) and does not change under the action ofyohimbine (10(-6) g/mL) and atenolol (10(-6) g/mL). These data indicate that the speed of agglutination increases with activation alpha1-adrenergic receptor (AR) and decreases in the activation of beta2-AR, while the activation of alpha2- and beta1-AR does not affect it. Trifluoperazine (10(-6) g/mL) as the calmodulin antagonist, barium chloride (10(-6) g/mL) as a blocked of Ca(2+)-dependent K(+)-channels and indomethacine (10(-6) g/mL) as an inhibitor of cyclooxygenase and phospholipase A2 inhibit the ability of adrenaline to increases the speed of agglutination of red blood cells. This suggests that the effect of adrenaline caused an increase in erythrocyte entry of Ca2+, activation of calmodulin, cyclooxygenase, phospholipase A2 and the release of K+ from red blood cell through the Ca(2+)-dependent K+ channels, which is regarded as a manifestation of eryptosis. Indirectly, this means that more efficient activation of alpha1-AR and beta2-AR, respectively, increases or, conversely, decreases the rate of eryptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app