Add like
Add dislike
Add to saved papers

Dynamics and reliability of bistable neurons driven with time-dependent stimuli.

Neural Computation 2014 December
The reliability of a spiking neuron depends on the frequency content of the driving input signal. Previous studies have shown that well above threshold, regularly firing neurons generate reliable responses when the input signal resonates with the firing frequency of the cell. Instead, well below threshold, reliable responses are obtained when the input frequency resonates with the subthreshold oscillations of the neuron. Previous theories, however, provide no clear prediction for the input frequency giving rise to maximally reliable spiking at threshold, which is probably the most relevant firing regime in mammalian cortex under physiological conditions. In particular, when the firing onset is governed by a subcritical Hopf bifurcation, the frequency of subthreshold oscillations often differs from the firing rate at threshold. The predictions of previous studies, hence, cannot be smoothly merged at threshold. Here we explore the behavior of reliability in bistable neurons near threshold using three types of driving stimuli: constant, periodic, and stochastic. We find that the two natural frequencies of the system, associated with the two coexisting attractors, provide a rich variety of possible locking modes with the external signal. Reliability is determined by the sensitivity to noise of each locking mode and by the transition probabilities between modes. Noise increases the amount of spike time jitter, and minimal jitter is obtained for input frequencies coinciding with the suprathreshold firing rate of the cell. In addition, noise may either enhance or inhibit transitions between the two attractors, depending on the input frequency. The dual role played by noise in bistable systems implies that reliability is determined by a delicate balance between spike time jitter and the rate of transitions between attractors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app