Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Targeting CD13 (aminopeptidase-N) in turn downregulates ADAM17 by internalization in acute myeloid leukaemia cells.

Oncotarget 2014 September 31
Secreted matrix metalloproteinases (MMP)-2 and MMP-9 and membrane-anchored aminopeptidase-N/CD13 are abnormally expressed in human acute myeloid leukaemia (AML). We previously showed that CD13 ligation by anti-CD13 monoclonal antibodies can induce apoptosis in AML cells. Here, we assessed ADAM17 expression in primary blood blasts CD13+CD33+ from patients with AML. Primary AML cells expressed ADAM17 transcript and its surface expression was higher in subtype M4 (myelomonocytic) and M5 (monocytic) AML specimens than in M0 and M1/M2 (early and granulocytic) specimens. In AML cell lines defining distinct AML subfamilies (HL-60/M2, NB4/M3, THP-1/M5, U937/M5) and primary AML cells cultured ex vivo, anti-CD13 antibodies downregulated surface CD13 and ADAM17 without affecting MMP-2/-9 release. Knockdown of CD13 by siRNA prevented anti-CD13-mediated ADAM17 downregulation, indicating that CD13 is required for ADAM17 downregulation. Soluble ADAM17 was not detected in the medium of anti-CD13 treated cells, suggesting that ADAM17 was not shed. After ligation by anti-CD13, CD13 and ADAM17 were internalized. Subsequently, we found that ADAM17 interacts with CD13. We postulate that the interaction of ADAM17 with CD13 and its downregulation following CD13 engagement has important implications in AML for the known roles of ADAM17 in tumour-associated cell growth, migration and invasion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app