JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The conserved disulfide bond within domain II of Epstein-Barr virus gH has divergent roles in membrane fusion with epithelial cells and B cells.

Journal of Virology 2014 December
UNLABELLED: Epstein-Barr virus (EBV) infects target cells via fusion with cellular membranes. For entry into epithelial cells, EBV requires the herpesvirus conserved core fusion machinery, composed of glycoprotein B (gB) and gH/gL. In contrast, for B cell fusion it requires gB and gH/gL with gp42 serving as a cell tropism switch. The available crystal structures for gH/gL allow the targeted analysis of structural determinants of gH to identify functional regions critical for membrane fusion. Domain II of EBV gH contains two disulfide bonds (DBs). The first is unique for EBV and closely related gammaherpesviruses. The second is conserved across the beta- and gammaherpesviruses and is positioned to stabilize a putative syntaxin-like bundle motif. To analyze the role of these DBs in membrane fusion, gH was mutated by amino acid substitution of the DB cysteines. Mutation of the EBV-specific DB resulted in diminished gH/gL cell surface expression that correlated with diminished B cell and epithelial cell fusion. In contrast, mutation of the conserved DB resulted in wild-type-like B cell fusion, whereas epithelial cell fusion was greatly reduced. The gH mutants bound well to gp42 but had diminished binding to epithelial cells. Tyrosine 336, located adjacent to cysteine 335 of the conserved DB, also was found to be important for DB stabilization and gH/gL function. We conclude that the conserved DB has a cell type-specific function, since it is important for the binding of gH to epithelial cells initiating epithelial cell fusion but not for fusion with B cells and gp42 binding.

IMPORTANCE: EBV predominantly infects epithelial and B cells in humans, which can result in EBV-associated cancers, such as Burkitt and Hodgkin lymphoma, as well as nasopharyngeal carcinoma. EBV is also associated with a variety of lymphoproliferative disorders, typically of B cell origin, observed in immunosuppressed individuals, such as posttransplant or HIV/AIDS patients. The gH/gL complex plays an essential but still poorly characterized role as an important determinant for EBV cell tropism. In the current studies, we found that mutants in the DB C278/C335 and the neighboring tyrosine 336 have cell type-specific functional deficits with selective decreases in epithelial cell, but not B cell, binding and fusion. The present study brings new insights into the gH function as a determinant for epithelial cell tropism during herpesvirus-induced membrane fusion and highlights a specific gH motif required for epithelial cell fusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app