Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The RNA helicase DHX34 activates NMD by promoting a transition from the surveillance to the decay-inducing complex.

Cell Reports 2014 September 26
Nonsense-mediated decay (NMD) is a surveillance mechanism that degrades aberrant mRNAs. A complex comprising SMG1, UPF1, and the translation termination factors eRF1 and eRF3 (SURF) is assembled in the vicinity of a premature termination codon. Subsequently, an interaction with UPF2, UPF3b, and the exon junction complex induces the formation of the decay-inducing complex (DECID) and triggers NMD. We previously identified the RNA helicase DHX34 as an NMD factor in C. elegans and in vertebrates. Here, we investigate the mechanism by which DHX34 activates NMD in human cells. We show that DHX34 is recruited to the SURF complex via its preferential interaction with hypophosphorylated UPF1. A series of molecular transitions induced by DHX34 include enhanced recruitment of UPF2, increased UPF1 phosphorylation, and dissociation of eRF3 from UPF1. Thus, DHX34 promotes mRNP remodeling and triggers the conversion from the SURF complex to the DECID complex resulting in NMD activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app