Add like
Add dislike
Add to saved papers

Identification of 3-nitro-2, 4, 6-trihydroxybenzamide derivatives as photosynthetic electron transport inhibitors by QSAR and pharmacophore studies.

In the present investigation, QSAR analysis was performed on a data set consist of structurally diverse compounds in order to investigate the role of its structural features on their Photosynthetic Electron Transport Inhibitors. The herbicidal activity co-related with certain topological and hydrophobicity based descriptors, 3D descriptors dependent steric, electrostatic and hydrophobic. The best 2D QSAR model was selected, having correlation coefficient r(2) = 0.8544 and cross validated squared correlation coefficient q(2) = 0.7139 with external predictive ability of pred_r(2) = 0.7753 was developed. The results obtained in this study indicate that hydroxy and nitro groups, as expressed by the SsOHcount, SddsN (nitro) count, is the most relevant molecular property determining efficiency of photosynthetic inhibitory. Molecular field analysis was used to construct the best k-nearest neighbor (kNN-MFA)-based 3DQSAR model using SA-PLS method, showing good correlative and predictive capabilities in terms of q(2) = 0.7694 and pred_r(2) = 0.7381. The influences of steric, electrostatic and hydrophobic field effects generated by the contribution plots are discussed. The pharmacophore model includes three features viz. hydrogen bond donor, hydrogen bond acceptor, and one aromatic feature was developed. The developed model was found to be predictive and can be used to design potent Photosynthetic Electron Transport activities prior to their synthesis for further lead modification. The results obtained suggest that the 3-nitro-2, 4, 6-trihydroxybenzamide analogues represent promising candidates for the development of new active principles targeting photosynthesis to be used as herbicides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app