JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

CCAAT-Enhancer-Binding Protein Homologous Protein Deficiency Attenuates Oxidative Stress and Renal Ischemia-Reperfusion Injury.

AIMS: Renal ischemia-reperfusion (I/R) is a major cause of acute renal failure. The mechanisms of I/R injury include endoplasmic reticulum (ER) stress, inflammatory responses, hypoxia, and generation of reactive oxygen species (ROS). CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is involved in the ER stress signaling pathways. CHOP is a transcription factor and a major mediator of ER stress-induced apoptosis. However, the role of CHOP in renal I/R injury is still undefined. Here, we investigated whether CHOP could regulate I/R-induced renal injury using CHOP-knockout mice and cultured renal tubular cells as models.

RESULTS: In CHOP-knockout mice, loss of renal function induced by I/R was prevented. Renal proximal tubule damage was induced by I/R in wild-type mice; however, the degree of alteration was significantly less in CHOP-knockout mice. CHOP deficiency also decreased the I/R-induced activation of caspase-3 and -8, apoptosis, and lipid peroxidation, whereas the activity of endogenous antioxidants increased. In an in vitro I/R model, small interfering RNA targeting CHOP significantly reversed increases in H2O2 formation, inflammatory signals, and apoptotic signals, while enhancing the activity of endogenous antioxidants in renal tubular cells.

INNOVATION: To the best of our knowledge, this is the first study which demonstrates that CHOP deficiency attenuates oxidative stress and I/R-induced acute renal injury both in vitro and in vivo.

CONCLUSION: These findings suggest that CHOP regulates not only apoptosis-related signaling but also ROS formation and inflammation in renal tubular cells during I/R. CHOP may play an important role in the pathophysiology of I/R-induced renal injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app