Add like
Add dislike
Add to saved papers

The sweeter aspects of platelet activation: A lectin-based assay reveals agonist-specific glycosylation patterns.

BACKGROUND: The diversity of platelet functions implies multiple activation states arising in response to different stimuli. Distinguishing between these states has been challenging.

METHODS: We used fluorescently labelled carbohydrate binding proteins lectins to investigate agonist-induced changes in platelet surface glycosylation.

RESULTS: Each of the seven agonists we used caused a unique set of changes in platelet surface glycosylation, eliciting a unique functional state. Some of these changes could be correlated with the expression of granule-specific markers CD62P and CD63, but lectins proved much more sensitive to differences between agonists than antibodies against those markers. This sensitivity appears to arise from the relation between the surface glycosylation changes and the signalling pathways through which various agonists act. In this context it is interesting that the effects of calcium ionophore were significantly different from those of other agonists. We also found that that P-selectin (CD62P) contains haptens for lectins VFA and PTII, because these lectins compete with the anti-CD62P antibody binding and vice a versa.

CONCLUSIONS: We report for the first time that changes in platelet surface glycosylation are agonist-specific and can be distinguished using lectin-binding assays. Lectin fingerprinting represents a new research and diagnostic tool for studying platelet activation.

GENERAL SIGNIFICANCE: The observation of agonist-specific platelet surface glycosylation changes is interesting in the context of the diversity of platelet function, because surface glycans mediate contact interactions between platelets and other cells and serve as binding sites for some of the agonists (galectins).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app