Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Calcium/calmodulin‑dependent protein kinase II enhances metastasis of human gastric cancer by upregulating nuclear factor‑κB and Akt‑mediated matrix metalloproteinase‑9 production.

Calcium/calmodulin‑dependent protein kinase II (CaMKII) is a multi-functional serine/threonine protein kinase, involved in processes that cause tumor progression, including cell cycle regulation, apoptosis and differentiation. However, the role of CaMKII in cancer cell metastasis has not been fully elucidated. In the present study, the function of CaMKII in gastric cancer cell metastasis is reported. Firstly, it was demonstrated that the overexpression of H282R (constitutively active CaMKII) enhanced gastric cancer cell migration and invasion, and the inhibition of CaMKII activity by KN‑62 decreased gastric cancer cell metastasis. Furthermore, H282R upregulated matrix metalloproteinase‑9 (MMP‑9) expression and production, which were dependent on CaMKII‑mediated increase in nuclear factor (NF)‑κB and Akt activation. Finally, CaMKII activation, through phosphorylation of the Thr 286 site, was significantly increased in the metastatic gastric cancer tissues compared with non‑metastatic tissues, suggesting that CaMKII has an important function in the regulation of gastric cancer cell metastasis. Collectively, the present study demonstrated that CaMKII promotes gastric cancer cell metastasis by NF‑κB and Akt‑mediated‑MMP‑9 production. These findings suggest a novel function of CaMKII in the control of gastric cancer metastasis, offering a promising target for future therapeutics to treat and prevent gastric cancer metastases via the inhibition of CaMKII activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app