Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

GATA-3 dose-dependent checkpoints in early T cell commitment.

Journal of Immunology 2014 October 2
GATA-3 expression is crucial for T cell development and peaks during commitment to the T cell lineage, midway through the CD4(-)CD8(-) (double-negative [DN]) stages 1-3. We used RNA interference and conditional deletion to reduce GATA-3 protein acutely at specific points during T cell differentiation in vitro. Even moderate GATA-3 reduction killed DN1 cells, delayed progression to the DN2 stage, skewed DN2 gene regulation, and blocked appearance of the DN3 phenotype. Although a Bcl-2 transgene rescued DN1 survival and improved DN2 cell generation, it did not restore DN3 differentiation. Gene expression analyses (quantitative PCR, RNA sequencing) showed that GATA-3-deficient DN2 cells quickly upregulated genes, including Spi1 (PU.1) and Bcl11a, and downregulated genes, including Cpa3, Ets1, Zfpm1, Bcl11b, Il9r, and Il17rb with gene-specific kinetics and dose dependencies. These targets could mediate two distinct roles played by GATA-3 in lineage commitment, as revealed by removing wild-type or GATA-3-deficient early T lineage cells from environmental Notch signals. GATA-3 worked as a potent repressor of B cell potential even at low expression levels, so that only full deletion of GATA-3 enabled pro-T cells to reveal B cell potential. The ability of GATA-3 to block B cell development did not require T lineage commitment factor Bcl11b. In prethymic multipotent precursors, however, titration of GATA-3 activity using tamoxifen-inducible GATA-3 showed that GATA-3 inhibits B and myeloid developmental alternatives at different threshold doses. Furthermore, differential impacts of a GATA-3 obligate repressor construct imply that B and myeloid development are inhibited through distinct transcriptional mechanisms. Thus, the pattern of GATA-3 expression sequentially produces B lineage exclusion, T lineage progression, and myeloid-lineage exclusion for commitment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app