Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Apparent diffusion coefficient scalars correlate with near-infrared spectroscopy markers of cerebrovascular autoregulation in neonates cooled for perinatal hypoxic-ischemic injury.

BACKGROUND AND PURPOSE: Neurologic morbidity remains high in neonates with perinatal hypoxic-ischemic injury despite therapeutic hypothermia. DTI provides qualitative and quantitative information about the microstructure of the brain, and a near-infrared spectroscopy index can assess cerebrovascular autoregulation. We hypothesized that lower ADC values would correlate with worse autoregulatory function.

MATERIALS AND METHODS: Thirty-one neonates with hypoxic-ischemic injury were enrolled. ADC scalars were measured in 27 neonates (age range, 4-15 days) in the anterior and posterior centrum semiovale, basal ganglia, thalamus, posterior limb of the internal capsule, pons, and middle cerebellar peduncle on MRI obtained after completion of therapeutic hypothermia. The blood pressure range of each neonate with the most robust autoregulation was identified by using a near-infrared spectroscopy index. Autoregulatory function was measured by blood pressure deviation below the range with optimal autoregulation.

RESULTS: In neonates who had MRI on day of life ≥10, lower ADC scalars in the posterior centrum semiovale (r = -0.87, P = .003, n = 9) and the posterior limb of the internal capsule (r = -0.68, P = .04, n = 9) correlated with blood pressure deviation below the range with optimal autoregulation during hypothermia. Lower ADC scalars in the basal ganglia correlated with worse autoregulation during rewarming (r = -0.71, P = .05, n = 8).

CONCLUSIONS: Blood pressure deviation from the optimal autoregulatory range may be an early biomarker of injury in the posterior centrum semiovale, posterior limb of the internal capsule, and basal ganglia. Optimizing blood pressure to support autoregulation may decrease the risk of brain injury in cooled neonates with hypoxic-ischemic injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app