Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhanced global mathematical model for studying cerebral venous blood flow.

Journal of Biomechanics 2014 October 18
Here we extend the global, closed-loop, mathematical model for the cardiovascular system in Müller and Toro (2014) to account for fundamental mechanisms affecting cerebral venous haemodynamics: the interaction between intracranial pressure and cerebral vasculature and the Starling-resistor like behaviour of intracranial veins. Computational results are compared with flow measurements obtained from Magnetic Resonance Imaging (MRI), showing overall satisfactory agreement. The role played by each model component in shaping cerebral venous flow waveforms is investigated. Our results are discussed in light of current physiological concepts and model-driven considerations, indicating that the Starling-resistor like behaviour of intracranial veins at the point where they join dural sinuses is the leading mechanism. Moreover, we present preliminary results on the impact of neck vein strictures on cerebral venous hemodynamics. These results show that such anomalies cause a pressure increment in intracranial cerebral veins, even if the shielding effect of the Starling-resistor like behaviour of cerebral veins is taken into account.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app