JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication.

Biochemical Pharmacology 2014 November 2
Our group reported a significant association between hexokinase II overexpression and chemoresistance in ovarian cancer, suggesting that aerobic glycolysis in the so-called Warburg effect might contribute to cancer progression. However, a growing body of evidence indicates contradictory findings with regard to the Warburg effect, such as high mitochondrial activity in highly invasive tumors and low ATP contribution of glycolysis in ovarian cancer. As a solution for the dilemma of the Warburg effect, the "reverse Warburg effect" was proposed in which aerobic glycolysis might occur in the stromal compartment of the tumor rather than in the cancer cells, indicating that the glycolytic tumor stroma feed the cancer cells through a type of symbiotic relationship. The reverse Warburg effect acting on the relationship between cancer cells and cancer-associated fibroblasts has evolved into dynamic interplay between cancer cells and multiple tumor stromal compartments, including cancer-associated fibroblasts, the extracellular matrix, endothelial cells, mesenchymal stem cells, adipocytes, and tumor-associated macrophages. Peritoneal cavities including ascites and the omentum also form a unique environment that is highly receptive for carcinomatosis in the advanced stages of ovarian cancer. The complicated but ingeniously orchestrated stroma-mediated cancer metabolism in ovarian cancer provides great heterogeneity in tumors with chemoresistance, which makes the disease thus far difficult to cure by single stromal-targeting agents. This review will discuss the experimental and clinical evidence of the cross-talk between cancer cells and various components of tumor stroma in terms of heterogeneous chemoresistance with focal points for therapeutic intervention in ovarian cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app