JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibition of metalloproteinase activity in FANCA is linked to altered oxygen metabolism.

Bone marrow (BM) failure, increased risk of myelodysplastic syndrome, acute leukaemia and solid tumors, endocrinopathies and congenital abnormalities are the major clinical problems in Fanconi anemia patients (FA). Chromosome instability and DNA repair defects are the cellular characteristics used for the clinical diagnosis. However, these biological defects are not sufficient to explain all the clinical phenotype of FA patients. The known defects are structural alteration in cell cytoskeleton, altered structural organization for intermediate filaments, nuclear lamina, and mitochondria. These are associated with different expression and/or maturation of the structural proteins vimentin, mitofilin, and lamin A/C suggesting the involvement of metalloproteinases (MPs). Matrix metalloproteinases (MMP) are involved in normal physiological processes such as human skeletal tissue development, maturation, and hematopoietic reconstitution after bone marrow suppression. Current observations upon the eventual role of MPs in FA cells are largely inconclusive. We evaluated the overall MPs activity in FA complementation group A (FANCA) cells by exposing them to the antioxidants N-acetyl cysteine (NAC) and resveratrol (RV). This work supports the hypothesis that treatment of Fanconi patients with antioxidants may be important in FA therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app