JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The relationship between pelvis-trunk coordination and low back pain in individuals with transfemoral amputations.

Gait & Posture 2014 September
Low back pain (LBP) is common in individuals with transfemoral amputation and may result from altered gait mechanics associated with prosthetic use. Inter-segmental coordination, assessed through continuous relative phase (CRP), has been used to identify specific patterns as risk factors. The purpose of this study was to explore pelvis and trunk inter-segmental coordination across three walking speeds in individuals with transfemoral amputations with and without LBP. Nine individuals with transfemoral amputations with LBP and seven without pain were compared to twelve able-bodied subjects. Subjects underwent a gait analysis while walking at slow, moderate, and fast speeds. CRP and CRP variability were calculated from three-dimensional pelvis and trunk segment angles. A two-way ANOVA and post hoc tests assessed statistical significance. Individuals with transfemoral amputation demonstrated some coordination patterns that were different from able-bodied individuals, but consistent with previous reports on persons with LBP. The patient groups maintained transverse plane CRP consistent with able-bodied participants (p = 0.966), but not sagittal (p < 0.001) and frontal plane CRP (p = 0.001). Sagittal and frontal CRP may have been re-optimized based on new sets of constraints, such as protective rigidity of the segments, muscular strength limitations, or prosthesis limitations. Patients with amputations and without LBP exhibited few differences. Only frontal and transverse CRP shifted toward out-of-phase as speed increased in the patient group with LBP. Although a cause and effect relationship between CRP and future development of back pain has yet to be determined, these results add to the literature characterizing biomechanical parameters of back pain in high-risk populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app