Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

N-terminal truncation mutations of adenomatous polyposis coli are associated with primary cilia defects.

Adenomatous polyposis coli (APC) gene is a tumor suppressor gene and its truncated mutations cause a few cilia-related diseases such as Gardner's syndrome. However, little is known about the mechanism that links APC mutations and cilia disorder. APC mutations lead to the expression of N-terminal fragments, which have dominant effects in tumors owing to loss of the C-terminal region or a gain of function. The present study investigated the impact of tumor-associated N-terminal APC fragments on primary cilia assembly and the possible molecular mechanism involved. We discovered that expression of tumor-associated N-terminal APC fragments (APC-N, APC-N1, APC-N2, and APC-N3, which contain amino acids 1-1018, 1-448, 449-781, and 782-1018 respectively), resulted in primary cilia defects. We found that a β-catenin/PI3K/AKT/GSK-3β feedback signal cascade is responsible for causing N-terminal APC fragment-induced cilia defects. In this cascade, dysfunctions of both β-catenin and GSK-3β were involved in the up-regulation of HDAC6 and subsequent decreased acetylated tubulin levels, which thereby led to cilia defects. These data suggest a mechanism for linking N-terminal APC fragments and cilia loss, thus accelerating our understanding of human cilia-related diseases such as Gardner's syndrome and their cause due to APC mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app