Add like
Add dislike
Add to saved papers

Computationally efficient banding of large covariance matrices for ordered data and connections to banding the inverse Cholesky factor.

In this article, we propose a computationally efficient approach to estimate (large) p-dimensional covariance matrices of ordered (or longitudinal) data based on an independent sample of size n. To do this, we construct the estimator based on a k-band partial autocorrelation matrix with the number of bands chosen using an exact multiple hypothesis testing procedure. This approach is considerably faster than many existing methods and only requires inversion of (k + 1)-dimensional covariance matrices. The resulting estimator is positive definite as long as k < n (where p can be larger than n). We make connections between this approach and banding the Cholesky factor of the modified Cholesky decomposition of the inverse covariance matrix (Wu and Pourahmadi, 2003) and show that the maximum likelihood estimator of the k-band partial autocorrelation matrix is the same as the k-band inverse Cholesky factor. We evaluate our estimator via extensive simulations and illustrate the approach using high-dimensional sonar data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app