CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Application of a three-dimensional print of a liver in hepatectomy for small tumors invisible by intraoperative ultrasonography: preliminary experience.

BACKGROUND: Hepatectomy for an invisible small tumor using intraoperative ultrasonography requires technical ingenuity. We used a 3D print of a liver to perform a hepatectomy on two patients with synchronous multiple liver metastases from colorectal cancer. Because of preoperative chemotherapy, one of the tumors became smaller and invisible to ultrasonography in each case. We present our procedure here.

METHODS: Multidetector-row computed tomography images of anatomical structures were digitally segmented using the original software "PLUTO," which was developed at the Graduate School of Information Science, Nagoya University. After converting the final segmentation data to stereolithography files, a 3D printed liver at a 70 % scale was produced. The support material was washed and the mold charge was removed from the 3D-printed hepatic veins. The surface of the 3D-printed model was abraded and coated with urethane resin paint. After air-drying, the 3D-printed hepatic veins were colored by injecting a dye. The 3D printed portal veins were whitish because mold charge remained. All procedures after 3D printing were performed by hand.

RESULTS: Hepatectomy for the small tumor that is invisible to intraoperative ultrasonography was performed by referring to a 3D-printed model. The planned resections were successful with histologically negative surgical margins.

CONCLUSIONS: The application of a 3D-printed liver to perform a hepatectomy for a small tumor that is invisible to intraoperative ultrasonography is an easy and feasible procedure. Use of 3D-printing technology in hepatectomy requires further improvement and automation of hand work after the 3D print has been made.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app