Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Synchronous multiscale neuroimaging environment for critically sampled physiological analysis of brain function: hepta-scan concept.

Brain Connectivity 2014 November
Functional connectivity of the resting-state networks of the brain is thought to be mediated by very-low-frequency fluctuations (VLFFs <0.1 Hz) in neuronal activity. However, vasomotor waves and cardiorespiratory pulsations influence indirect measures of brain function, such as the functional magnetic resonance imaging blood-oxygen-level-dependent (BOLD) signal. How strongly physiological oscillations correlate with spontaneous BOLD signals is not known, partially due to differences in the data-sampling rates of different methods. Recent ultrafast inverse imaging sequences, including magnetic resonance encephalography (MREG), enable critical sampling of these signals. In this study, we describe a multimodal concept, referred to as Hepta-scan, which incorporates synchronous MREG with scalp electroencephalography, near-infrared spectroscopy, noninvasive blood pressure, and anesthesia monitoring. Our preliminary results support the idea that, in the absence of aliased cardiorespiratory signals, VLFFs in the BOLD signal are affected by vasomotor and electrophysiological sources. Further, MREG signals showed a high correlation coefficient between the ventromedial default mode network (DMNvmpf) and electrophysiological signals, especially in the VLF range. Also, oxy- and deoxyhemoglobin and vasomotor waves were found to correlate with DMNvmpf. Intriguingly, usage of shorter time windows in these correlation measurements produced significantly (p<0.05) higher positive and negative correlation coefficients, suggesting temporal nonstationary behavior between the measurements. Focus on the VLF range strongly increased correlation strength.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app