Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Design considerations for electrode buffer layer materials in polymer solar cells.

Electrode buffer layers in polymer-based photovoltaic devices enable highly efficient devices. In the absence of buffer layers, we show that diode rectification is lost in ITO/P3HT:PCBM/Ag (ITO = indium tin oxide; P3HT = poly(3-hexylthiophene); PCBM = phenyl C61-butyric acid methyl ester) devices due to nonselective charge injection through the percolated phase pathways of a bulk heterojunction active layer. Charge-selective injection, and thus rectification and device function, can be regained by placing thin, polymeric buffer layers that break the direct electrode-active layer contact. Additionally, we show that strong active layer-buffer layer interactions lead to unwanted vertical phase separation and a kinked current-voltage curve. Device function is regained, increasing power conversion efficiency from 3.6% to 7.2%, by placing a noninteracting layer between the buffer and active layer. These results guide the design and selection of future polymeric electrode buffer layers for efficient polymer solar cell devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app