Add like
Add dislike
Add to saved papers

Generation of Laguerre-Gaussian LGp0 beams using binary phase diffractive optical elements.

Applied Optics 2014 July 21
In recent years, considerable attention has been devoted to laser beams with specific intensity profile, i.e., non-Gaussian. In this work, we present a novel technique to generate high-radial-order Laguerre-Gaussian beams LG(p0) based on the use of a binary phase diffractive optical element (BPDOE). The latter is a phase plate made up of annular zones introducing alternatively a phase shift equal to 0 or π modeled on positions which do not coincide with the position of the zeros of the desired LG(p0) beam. The LG(p0) beams are obtained by transforming a fundamental Gaussian beam through an appropriate BPDOE. The design of the latter is based on the calculation of the Fresnel-Kirchhoff integral, and the diffracted intensity at the focus plane of a lens has been modeled analytically for the first time. The numerical simulations and experiment demonstrate a good beam quality transformation. Obtained LG(p0) are suitable for atom trap and pumping solid state laser applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app