Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Correlative assessment of tumor microcirculation using contrast-enhanced perfusion MRI and intravoxel incoherent motion diffusion-weighted MRI: is there a link between them?

NMR in Biomedicine 2014 October
The purpose of this study was to correlate intravoxel incoherent motion (IVIM) imaging with classical perfusion-weighted MRI metrics in human gliomas. Parametric images for slow diffusion coefficient (D), fast diffusion coefficient (D*), and fractional perfusion-related volume (f) in patients with high-grade gliomas were generated. Maps of Fp (plasma flow), vp (vascular plasma volume), PS (permeability surface-area product), ve (extravascular, extracellular volume), E (extraction ratio), ke (influx ratio into the interstitium), and tc (vascular transit time) from dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast-enhanced (DSC) MRI were also generated. A region-of-interest analysis on the contralateral healthy white matter and on the tumor areas was performed and the extracted parameter values were tested for any significant differences among tumor grades or any correlations. Only f could be significantly correlated to DSC-derived vp and tc in healthy brain tissue. Concerning the tumor regions, Fp was significantly positively correlated with D* and inversely correlated with f in DSC measurements. The D*, f, and f × D* values in the WHO grade III gliomas were non-significantly different from those in the grade IV gliomas. There was a trend to significant negative correlations between f and PS as well as between f × D* and ke in DCE experiments. Presumably due to different theoretical background, tracer properties and modeling of the tumor vasculature in the IVIM theory, there is no clearly evident link between D*, f and DSC- and DCE-derived metrics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app