JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Effect of selective inhibition of monoacylglycerol lipase (MAGL) on acute nausea, anticipatory nausea, and vomiting in rats and Suncus murinus.

Psychopharmacology 2015 Februrary
RATIONALE: To determine the role of the endocannabinoid, 2-arachodonyl glycerol (2-AG), in the regulation of nausea and vomiting.

OBJECTIVE: We evaluated the effectiveness of the potent selective monoacylglycerol lipase (MAGL) inhibitor, MJN110, which selectively elevates the endocannabinoid 2-AG, to suppress acute nausea and vomiting, as well as anticipatory nausea in rat and shrew models.

METHODS: The rat gaping models were used to evaluate the potential of MJN110 (5, 10, and 20 mg/kg, intraperitoneally [IP]) to suppress acute nausea produced by LiCl and of MJN110 (10 and 20 mg/kg, IP) to suppress anticipatory nausea elicited by a LiCl-paired context. The potential as well of MJN110 (10 and 20 mg/kg, IP) to suppress vomiting and contextually elicited gaping in the Suncus murinus was evaluated.

RESULTS: MJN110 suppressed acute nausea in rats, LiCl-induced vomiting in shrews and contextually-elicited anticipatory nausea in both rats (accompanied by elevation of 2-AG in the visceral insular cortex) and shrews. These effects were reversed by the CB1 antagonist/inverse agonist, SR141716. The MAGL inhibitor did not modify locomotion at any dose. An activity-based protein profiling analysis of samples of tissue collected from the visceral insular cortex in rats and whole brain tissues in shrews revealed that MJN110 selectively inhibited MAGL and the alternative 2-AG hydrolase, ABHD6.

CONCLUSIONS: MAGL inhibition by MJN110 which selectively elevates endogenous 2-AG has therapeutic potential in the treatment of acute nausea and vomiting as well as anticipatory nausea, a distressful symptom that is resistant to currently available treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app