Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhanced skin permeation of 5α-reductase inhibitors entrapped into surface-modified liquid crystalline nanoparticles.

The objective of this study is to enhance skin permeation of finasteride and dutasteride for the treatment of androgenetic alopecia using surface-modified liquid crystalline nanoparticle (sm-LCN) dispersion. LCN entrapped with the drugs was prepared by using monoolein as a liquid crystal former, and surface modification was performed by treatment of the LCN dispersion with same volume of 1 % v/v acetic acid solution containing chitosan. Physicochemical properties of the LCN's were studied with regard to particle size, polydispersity index, zeta potential, and release of the drugs. Skin permeation of drugs entrapped into the LCN and sm-LCN was investigated with porcine abdominal skin using Franz diffusion cell. Cytotoxicity of the LCN's was also studied using human skin keratinocytes. The particle size and zeta potential of the LCN were 197.9 ± 2.5 nm and -20.2 ± 1.9 mV, respectively, and sm-LCN showed slightly bigger size and positive zeta potential due to the presence of thin coating on the surface of the nanoparticles. Compared to LCN, sm-LCN resulted in significantly enhanced skin permeation of the drugs whereas in vitro release was significantly reduced. Cell viability as a measure of cytotoxicity was above 80 % up to 20 μg/ml concentration of both LCN and sm-LCN. In conclusion, sm-LCN may provide a strategy to maximize therapeutic efficacy minimizing unwanted systemic side effects associated with the use of the drugs for the treatment of androgenetic alopecia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app