JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prognostic value of CA4/DG volumetry with 3T magnetic resonance imaging on postoperative outcome of epilepsy patients with dentate gyrus pathology.

Epilepsy Research 2014 October
PURPOSE: Hippocampal sclerosis (HS), the most common feature of mesial temporal lobe epilepsy (MTLE), is widely accepted as surgical indication for refractory epilepsy. Pathological hallmarks in hippocampal dentate gyrus (DG), including granule cell loss (GCL) and granule cell dispersion (GCD), are known to be closely related to the status epilepticus and spontaneous seizure. Our aim was to assess the association between volumetric changes in the hippocampal CA4/DG determined with 3-Tesla (3T) magnetic resonance imaging (MRI) and the postoperative seizure outcomes in MTLE patients with or without dentate gyrus pathology (DGP).

METHODS: High-resolution T2- and T1-weighted three-dimensional (3D) MRI scans were performed on 39 MTLE patients before surgery with a 3T Philips scanner. ITK-SNAP software was used for segmentation and volumetry of the CA4/DG segment, and NASP software was used for 3D reconstructions of the CA4/DG region. Immunostaining for Neuronal Nuclei (NeuN) was performed on resected hippocampal specimens after surgery to verify the accuracy of CA4/DG segmentation and histopathological changes in DG.

RESULTS: The CA4/DG subfield could be precisely segmented with high-resolution 3T MRI and confirmed by comparison of NeuN-immunoreactive slices with MRI results. MTLE patients with DGP showed smaller CA4/DG volume and favorable postoperative seizure outcomes.

CONCLUSION: The volumetry of CA4/DG was associated with the pathological changes in DG in MTLE patients. The volumetry of CA4/DG with preoperative 3T MRI could predict the postoperative seizure outcomes in those patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app