Journal Article
Observational Study
Add like
Add dislike
Add to saved papers

Conventional hemodynamic resuscitation may fail to optimize tissue perfusion: an observational study on the effects of dobutamine, enoximone, and norepinephrine in patients with acute myocardial infarction complicated by cardiogenic shock.

AIM: To investigate the effects of inotropic agents on parameters of tissue perfusion in patients with cardiogenic shock.

METHODS AND RESULTS: Thirty patients with cardiogenic shock were included. Patients received dobutamine, enoximone, or norepinephrine. We performed hemodynamic measurements at baseline and after titration of the inotropic agent until cardiac index (CI) ≥ 2.5 L.min-1.m(-2) or mixed-venous oxygen saturation (SvO2) ≥ 70% (dobutamine or enoximone), and mean arterial pressure (MAP) ≥ 70 mmHg (norepinephrine). As parameters of tissue perfusion, we measured central-peripheral temperature gradient (delta-T) and sublingual perfused capillary density (PCD). All patients reached predefined therapeutic targets. The inotropes did not significantly change delta-T. Dobutamine did not change PCD. Enoximone increased PCD (9.1 [8.9-10.2] vs. 11.4 [8.4-13.9] mm.mm(-2); p<0.05), and norepinephrine tended to decrease PCD (9.8 [8.5-11.9] vs. 8.8 [8.2-9.6] mm.mm-2, p = 0.08). Fifteen patients (50%) died within 30 days after admission. Patients who had low final PCD (≤ 10.3 mm.mm-2; 64%) were more likely to die than patients who had preserved PCD (>10.3 mm.mm(-2); mortality 72% vs. 17%, p = 0.003).

CONCLUSION: This study demonstrates the effects of commonly used inotropic agents on parameters of tissue perfusion in patients with cardiogenic shock. Despite hemodynamic optimization, tissue perfusion was not sufficiently restored in most patients. In these patients, mortality was high. Interventions directed at improving microcirculation may eventually help bridging the gap between improved hemodynamics and dismal patient outcome in cardiogenic shock.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app