JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression analysis of self-incompatibility-associated genes in non-heading Chinese cabbage.

In Brassicaceae, a self-incompatibility (SI) system mediates pollen-pistil interactions. Self-pollen could be recognized and rejected by incompatible pistils. Several components involved in the SI response have been determined, including S-locus receptor kinase (SRK), S-locus cysteine-rich protein/S-locus protein 11, and arm repeat-containing protein 1 (ARC1). However, the components involved in the SI system of Brassicaceae are not fully understood. Here, we detected expression patterns of 24 SI-related genes in non-heading Chinese cabbage (Brassica campestris ssp chinensis Makino) after compatible and incompatible pollination, and potential interaction relationships of these genes were predicted. SRK and ARC1 transcripts increased initially 0.25 h after incompatible pollination, while kinase-associated protein phosphatase had an expression pattern that was opposite that of SRK transcripts during self-pollination. Plant U-box 8 was not required in the SI response of non-heading Chinese cabbage. Our results showed that the SI signal of non-heading Chinese cabbage could occur within 0.25 h after self-pollination. The hypothetical interaction relationships indicated that plastid-lipid-associated protein and malate dehydrogenase could be negatively regulated by chaperonin 10, glutathione transferase, cytidylate kinase/uridylate kinase, and methionine synthase by indirect interactions. Our findings could be helpful to better understand potential roles of these components in the SI system of non-heading Chinese cabbage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app